手机浏览器扫描二维码访问
很多人都玩过电子游戏。
比如说电子游戏“推箱子”,游戏画面就是二维;而现在3D产品问世,现在好多人玩的游戏都是所谓的三维。
而所谓的空间结构,作者通俗来说。
一维是点,二维是平面,三维是空间。
从解析几何上来说,一维是粉笔下的点,二维是直线x垂直于直线y所构成平面,三维是垂直于二维平面所形成的空间。
四维之上至更高的纬度,对于作者所处的时间线来说,是很难理解的。
。
。
。
如果说在空间中引入磁场,或者在磁场中引入空间。(本章节纯属娱乐)
如果一个点,在处于正常状态,就只是一个点。如果加上其他因素,就可能不是一个点。比如点的内部存在将点分化瓦解成两个半点的东西。这可能是条线x了(警惕:把点看成线,把线看成点)。如果两半点所处的线在某时间与线x两两相互垂直,就构成了三维空间。
简单的磁场体系(理想条件)是一个体系中存在贯穿该体系的一条直线的同时存在两个点(假定为加点和减点)。
假定1
由加(减)点到减(加)点的线段任意画圆弧(圆弧直径不超过线段长度),就会形成一个扇面a,在该扇面所在平面内,只有唯一的一个扇面与扇面a共用一个线段。那么这两个扇面组成的图形就是对称图形。
如果扇面a形状恒定,线段位置恒定,但扇面a所处平面不恒定,就会构成一个类似于椭球体的空间。
这个模型就很像西瓜。我们都知道西瓜籽是遍布西瓜内部的,在瓜皮内。
假定2
假定1(粘贴)由加(减)点到减(加)点的线段任意画圆弧(圆弧直径超过线段长度但小于二倍线段长),就会形成一个扇面a,在该扇面所在平面内,只有唯一的一个扇面与扇面a共用一个线段。那么这两个扇面组成的图形就是对称图形。
如果扇面a形状恒定,线段位置恒定,但扇面a所处平面不恒定,就会构成一个类似于环体的空间模型。
这个模型就很像苹果。我们都知道苹果籽是贴着苹果核的。
假定3
假定1(粘贴)由加(减)点到减(加)点的线段任意画圆弧(圆弧直径超过线段二倍线段长),就会形成一个扇面a,在该扇面所在平面内,只有唯一的一个扇面与扇面a共用一个线段。那么这两个扇面组成的图形就是对称图形。
如果扇面a形状恒定,线段位置恒定,但扇面a所处平面不恒定,就会构成一个环体的空间模型。
单类似于环体和环体究竟有什么区别。
我们不知道。
我们只知道苹果成熟后是会掉落的(内部外部共同作用)。((所以,动物都学会了采摘。))
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
退婚后,我成了战神世子妃 大唐:极品驸马爷 小神棍下山:未婚妻绝色倾城! 快穿之满级神明可盐可甜 重生后,嫁给疯批小皇叔 孕妻带球逃,总裁追到火葬场 美女总裁的绝品保镖 神医宦妃:九千岁,一撩到底! 重生之庶女将军复仇记 大佬们的团宠一岁半 他的金丝雀 我的七个姐姐风华绝世 傅总,夫人就在您隔壁 官场孽缘 凡人作弊修仙 穿成病娇大佬的恶毒大嫂 离婚后傅总追妻不要脸 重生:渣男他罪该万死 少帅临门,七宝妈咪团宠妻 七零悍妻凶凶哒
为女友负债累累,却被背叛羞辱,本以为死定了,却获得了无上传承。至此改变人生,不仅美女蜂拥,权贵臣服,更是富贵滔天!曾经欺我辱我者,都将通通踩在脚下。医术,能救死扶伤,也能惩恶除害!...
凡人流无系统与传统仙侠写法不同,不喜勿入那一年,七岁的男孩儿带着妹妹踏入了修仙界,然后,修仙的全疯了! 出来修仙,你天赋好不好,宝贝多不多,有没有机缘,这些都不重要,但你一定要记住,有一个人你不能惹。 虽然这个人并不是什么修仙之人。 但是他的刀,比光还快,快到你根本来不及调动灵力。 他的拳,比天还重,重的可以一拳让这个世界停止自转。 他的嘴,比我还贱,贱的可以让烈阳流泪,让皎月燃烧。 他是谁?他是一个没有修仙天赋,却在修仙界练武的靓仔。 多年以后,修仙界一众大佬们问他林大靓仔,你一个练武的为啥非要跑到修仙界呢? 少年笑嘻嘻的回答道我只是没有修仙的天赋而已,但我超喜欢在修仙界玩耍的,那里面个个都是人才,说话又好听,还有各种花里胡哨的特殊才华,哎哟我超喜欢里面的。 修仙大佬们集体绝望喜欢?喜欢你提着把刀砍了半个修仙界?各位书友要是觉得那些年,我们一起砍过的修仙者还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...
一个人变强大的最好方式,就是拥有一个想要保护的人,只有如此,他才会拼尽全力。为了家族的振兴,一人去浪迹整个天下,身寄星云,行走八荒,不为了别的,只为了拥有绝对的力量,捍卫自己的尊严,守护身边的人。扬眉,才能吐气,激昂,可破青云...
襄山神女(古言1v1)简介emspemsp羲和,生来就是神仙的襄山神女,爹不管妈不爱,山水间自由成长,一仗之后被封印,留了一缕神识体验人世繁华emspemsp者华,蓬莱仙子最爱的徒弟,有才学有慧根,就是不想身体力行的帮师傅涨修为...
番茄继吞噬星空莽荒纪雪鹰领主后的第九本小说。在这个世界,有狐仙河神水怪大妖,也有求长生的修行者。修行者们,开法眼,可看妖魔鬼怪。炼一...
一个平凡的少年,意外发现家传绝学千金要方,从此医行天下,救死扶伤。我有一双妙手,可救人,亦能杀人!...